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ABSTRACT 

The power transfer function for the objective analysis of scalar fields by linear interpolation is determined with 
a simple statistical model of the data distribution. The method of successive corrections is used in a computational 
verification of the result. 

It is shown that the spectral filtering by interpolation is due to distance-dependent weighting and discrete sampling. 
True spectra can be inferred from interpolated waves that are long with respect to average sampling interval. 

The interpolation phase of objective analysis usually 
provides field estimates on a regular net through linear 
combinations of station observations at  irregularly dis- 
tributed locations. These estimates may be adjusted in an 
initialization for a prognostic model, or they may be used 
directly in a diagnostic analysis of the data. I n  either case, 
the relation between the observed and interpolated spectra 
is of interest. 

Spectral modifications associated with linear operations 
in a dat,a continuum or in regularly spaced discrete arrays 
are easily determined. However, the ana.lysis is more difti- 
cult when the observation sites are irregularly distributed, 
and results derived for continuous fields have been used to 
infer the discrete response (Stephens 1967). Stephens and 
Stitt (1970) have introduced a simple statistical model of 
the distribution of observing sites that can be used to find 
the average response for a linear arithmetic operation on 
randomly distributed data in the plane. It is modified here to 
find the power transfer functions for interpolation with 
a simple scan technique and for the method of successive 
corrections introduced by Cressman (1959). The Cressman 
weight function is used in a computational verification of 
the formulation. 

9. AVERAGED ESTIMATES 
In  application to a scalar field, successive correction 

estimates Z;,k a t  the grid point (jAx, kAy) are generated 
from samples of the observed field 2" and a guess field Z g  

by a correction formula of the type 

f r ,  sin e,)-Zg(jAz+r, cos e,, kAy+rm sin e,)} (1) 

where M is the number of stations within the influence 
radius R. The weight function w,(r,,R,M) is normalized 
to unitv bv 

Here, W(r,,R) is the weight associated with the mth 

ordered station in which the coordinates are ( , ,Om) in a 
local polar coordinate system. 

Station positions vary with each grid point, so that 
analysis of eq (1) is difficult. However, if the locations 
are randomly distributed over the domain, then the 
average response can be obtained. The analysis given 
below is patterned after that shown by Stephens and 
Stitt (1970). 

Under the random distribution assumption, r ,  and 8, 
are rmdom variables with associated probability densities 
pm(r,,d) and fm(Om), respectively. Here, d is the average 
station separation defined such that, if there are N 
stations in the total area A, Nd2=A. The average weight 
for each station is then determined by averaging its 
location over all possible values. 

The Fourier representations 

(3) 

a,nd 

where KZ=2r/L, and Ku=2r/Lu, are introduced in eq (1) 
for interpolation in a rectangular domain of dimensions 
LzXL,: 

Since all stations in the domain may appear within the 
influence area for a particular realization of the data 
array, all are included in eq (5). A field estimate averaged 
over all possible station distributions and including 
all stations is then obtained by 

Since all values of e, in (- T, T )  are equally likely, 
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where assumption that all N stations were always present. That 
KIK= 4 m u  approximation simplifies the form of HI,, but the results 

differ appreciably from those presented here only for 
and JO is the Bessel function (Oliver 1964) of the first wavelengths much greater than the data separation and 
kind end order zero. Then, with suppressed average for influence radii less than the minimum definable wave- 
notation, the grid point estimate can be written as length. The relative behavior with respect to changes in 

(R/d) for a given wavelength is not changed appreciably 

The simple scan technique chosen for examination here 
generates grid point estimates by means of the linear 

o o m  
zj,k=Zf&+ c ( O ~ r - G ~ K ) e l K ~ ~ ' A z + l K ~ r k A u  I z K ( N ,  R) by this more complete formulation. 

&-DO r=-oo 

(8) 

where combination 

W,(Tm, R, M)Z"(jAz+rm COS em, 
kAy+rm sin e,,,) MzO 

M=O. (17) 

IZK@, R)= m=l 5 l w P , ( r , ,  d)Wn(rm, Ri a)  Jo(rmKddrm. 

In general, all N stations will not be in the influence 
area' -There . is a probability pN(rN<R} that the Nth This differs from the method of successive corrections in 
ordered station is within the influence area and a prob- 
ability (1-PN) that it is not. Accordingly, that a guess field is used only if there are no stations pres- 

ent. The averaged counterpart of eq (17) is 

Z ~ R = ( ~ - P N ) Z ! , ~ ( N -  1 )+PN{  Z,B,k+A, k(N } (10) D O o o  N 
Z!,k= O~KHcKefKzl~Az+fKunkdY+Z~,k n ( l -pm).  

gL-m K = - w  m=l  

(18) where Z g , k  ( N - 1 )  is the estimate when the Nth station 
is outside the inhence radius and the notation 

3. TRANSFER FUNCTIONS 
m o o  

A,, k ( N )  = &-=--m L[=-oo = (0,- Gcr)elKz z'Az'fK~KkAuIlz (N,  R) The Fourier coefficients {EzK} for Ze(z,y) can be in- 

Ezr=HzKOcr+ (l-HzK)GzK* (19) 

( 1 1 )  troduced in eq (14) to conclude that 

has been introduced. Similarly, there is a probability 
PN--I that rN-,<R when rN>R so that 

2$, k(N- 1 )  = ( 1  - p N -  l)q, k(N-2) 
The real quantity Hz,  will be termed the distance influence 
function. It can be interpreted as the transfer or response 
function for the method of successive corrections only 

+ P N - - I { Z f * * + A A k ( N - l )  1' ( 1 2 )  when the guess field is zero. 

This reasoning can be continued until only the closest 
station is left for consideration. If it is not within R, then 
the guess field is used as the estimate. Thus, 

G, k ( 1 )  = ( 1  --PI>Zf, L +PI 27, k + A ,  k ( 1  ) 1. ( 1  3) 

These results can be combined by induction to write 

and 
N 

a=8+1 
h&9=Pj3 lI ( l - P J .  (16) 

Properly, PB is the probability that the pth station is 
within R when the ( p + l )  is not. However, in the com- 
putations shown below, the empirically determined 
p~(rp,d)  from which the PO are derived are independent 
rather than joint distributions. 

This analysis differs from that of Stephens and Stitt 
(1970) only in that they normalized the weights under the 

For assessing the relative roles of the observed and guess 
fields in generating the estimates, the distance influence 
function Hz,  was calculated with the numerical techniques 
and probability densities used by Stephens and Stitt 
(1970). The results are shown in figure 1 for various com- 
binations of influence radii, data separations, and wave- 
lengths for Z = K .  The distance influence or (amplitude) 
transfer function for a continuous distribution of data is 
taken from Stephens (1967). Both the continuous and 
discrete responses are based on the Cressman (1959) 
weight function 

The results will vary with different weight functions. 
If the guess field is disregarded for the moment, it can 

be concluded that the average effect of discrete sampling 
is to  filter somewhat more than if the weight were applied 
to a continuous field. While the H c l  curve is nearly univer- 
sal for long waves, there are systematic variations. For a 
given separation, an increase in influence radius leads to 
greater filtering. For a given ratio of influence radius to  
wavelength, a data separation increase decreases Hzz. 

If attention is now restricted to waves in which lengths 
are greater than twice the influence radius, eq (19) can be 
used to  infer that the estimated field is determined by 
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4. COMPUTATIONAL VERIFICATION 

FIGURE 1.-Distance influence function for various influence radii 
and data separations as a function of the ratio of influence radius 
to wavelength. 

the observations for long waves and by the guess field a t  
shorter wavelengths. The latter is also true for wavelengths 
less than twice the influence radius. Clearly, any wave for 
which G ,  is an adequate representation of OIK will be 
effectively reconstituted a t  the grid points. 

The Fourier coefficients {Eiy)\ for the Mth  scan with 
the estimated field always used as the guess field for the 
subsequent pass are 

where Hf '  is the distance influence function evaluated 
with the influence radius used on the kth pass. In  the 
special case where the same influence radius is used for 
each scan, eq (21) reduces to 

For all HIK such that (1-HzJ2<l, 

The limit diverges for HzK<O. This suggests that repeated 
scans coupled with selective low-pass filtering would 
yield an effective longwave analysis scheme. 

Except for influence radii comparable to data separa- 
tions where the guess field alternative is more probable, 
the distance influence function is the amplitude transfer 
function for the scan method. This corresponds to  the case 
of a null guess field for the method of successive corrections. 

A computational check of the formulation was made 
with the set of observed fields 

Z:(x, y)=sin (z 2"Xk ) sin rq k) 

where k=1,  2, . . . , 10; L=21Az; and Ax=1. Bandom 
station locations were generated with an average sepa- 
ration d=lAz, and eq (24) was evaluated at  each site to 
form a set of observations. After removing the average 
from each observation, interpolated values were found 
with the method of successive corrections with the Cress- 
man weight on a 2 1 x 2 1  net. Two scans were used with 
an initial guess-field of zero and R=l .75d.  Discrete 
spectra were calculated for the interpolated array as well 
as for eq (24) evaluated a t  the grid points. Experimental 
power transfer functions were then calculated as the ratio 
of the interpolated variance to the true variance for each 
wave number. The process was repeated four times for 
the first four wave numbers and three times for k=5, 10. 
A different station array was generated for each of these 
realizations. The power transfer function for each experi- 
ment is shown in figure 2 with the average responses 
connected by dashed lines. 

Theoretical power transfer functions for the t.wo passes 
were determined from eq (22) : 

ior the first scan and 

I E 1 1 I 2 =  { 2H*l-H;* ~"0,,lZ (26) 

for the second scan. These constitute the theoretical 
model to be used for comparison. 

As shown in figure 2, there is substantial agreement 
between the experiments and the model summarized in 
(25) and (26). The experimentaJ response for long waves 
is in good quantitative agreement, although rather 
consistently less than the theory. 

The agreement for wa.ves shorter than twice the influence 
radius is only qualitative, and the experimental values are 
consistently greater than the theory. The second-pass 
discrepancy is not due to the interpolation of the guess 
field to the stations. When following Stephens and Stitt 
(1970), it can be shown that eq (26) would be modified to 

if that secondary interpolation is included in the analysis. 
Since H z z  < 0 in this shortwave region, the actual 
discrepancy is larger than that indicated. The agreement 
would be better for the long waves. 

Aliasing is apparently responsible for the discrepancy. 
Spectra determined from the grid are necessarily band- 
limited ; yet, because of the variability of station locations, 
waves of all lengths would be implied on a continuous 
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FIGURE 2.-Power transfer functions for one- and two-pass applications of the method of successive corrections with a zero guess field for 

(R id )=  1.75 and d= Ax. 
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FIGURE 3.-Schematic illustration of the difference between the 
model and actual interpolations. 
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FIGURE 4.-Percentage excess variance for one- and two-pass 
applications of the method of successive corrections with a zero 
guess field for (R]d)=1.75 and d=Az. 
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distribution of analyzed points. Waves less than twice the 
grid spacing are aliased into larger waves. An example of 
this is shown schematically in figure 3. The analyzed field 
would be that indicated by the dashed line. While its 
spectrum would reflect a principal contribution at  the 
appropriate wave number, other wavelengths would also 
be represented. Further, the percentage contribution by 
aliasing to wavelengt<hs other than the nominal one would 
be expected to increase with wave number. This is shown 
in figure 4 for both passes for R=1.75 d .  It was found that 

The average response model introduced here can be 
used to infer the true (observed) spectrum from that of the 
interpolated values, except for waves comparable to  the 
shortest definable one in length. 

While the data distributions used here were random, the 
results shown by Stephens and Stitt (1970) suggest that 
the model can be applied to actual distributions with 
success. 

A C K N O W L E D G M E N T S  

the excess variance decreased with increasing influence 
radius. 

The results shown in figure 2 are for each of the zg(s,?/) 
evaluated separately. Computations for 

The authors are indebted to Dr. 0. Talagrand of the Geophysical 
Fluid Dynamics Laboratory, NOAA, at Princeton, N.J., for his 
constructive and complete review and to Mrs. Janina Richards for 
her care in typing the manuscript. 

i n  I 
2q2, y ) = C  5 Zn”(2, y) 

k = l  k 
show no significant differences. 

5. CONCLUSIONS 

Linear interpolation to a grid significantly modifles 
observed field spectra in the absence of an adequate guess 
field. The filtering derives from the use of a distance- 
dependent weighting and from discrete sampling. In  
general, the continuum response will not give an adequate 
measure of the filtering. 
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